Sports and Exercise
Type1NOW

Tom Blevins MD F.A.C.E.
Texas Diabetes and Endocrinology
Austin, Texas

NBA
Gary Forbes
You

ADA Guidelines

- Exercise is an important part of the diabetes management plan.
- Regular exercise has been shown to improve
 - Blood glucose control
 - Reduce cardiovascular risk factors
 - Contribute to weight loss
 - Improve well-being

Benefits of Exercise

- Lifespan increases with exercise
 - Steady increase from 500 cal/day to 3500 cal/day
- Exercise needed to burn 3,500 cal/day
 - Walking 3 mph for 7 hours/week
 - Bicycling 10 mph for 5 hours/week
 - Running 9 mph for 2.7 hours/week
AHA Physical Activity Recommendations

Guidelines for healthy adults under age 65
- Do moderately intense aerobic exercise 30 minutes a day, five days a week.
- Do vigorously intense aerobic exercises 20 minutes a day, three days a week.
- Do 8 to 12 strength training exercises, 8 to 12 repetitions of each exercise, twice a week.

Guidelines for adults over age 65 (or age 50 to 64 with chronic health conditions)
- Do moderately intense aerobic exercise 30 minutes a day, five days a week.
- Do vigorously intense aerobic exercises 20 minutes a day, three days a week.
- Do 8 to 12 strength training exercises, 8 to 12 repetitions of each exercise, twice to three times per week.
- If you are at risk of falling, perform balance exercises.
- Have a physical activity plan.

Getting Started

Getting Started

Pre-Exercise Evaluation

- Assess for conditions that might contraindicate certain types of exercise or predispose to injury
 - Such as uncontrolled hypertension
 - Severe autonomic neuropathy
 - Severe peripheral neuropathy
 - History of foot lesions
 - Unstable proliferative retinopathy
- Age and previous physical activity level should be considered
Getting Started
Pre-Exercise Evaluation

- Prior guidelines suggested that before recommending a program of physical activity, the provider should assess patients with multiple cardiovascular risk factors for coronary artery disease (CAD).
- CHD Screening and Treatment, the area of screening asymptomatic diabetic patients for CAD remains unclear, and a recent ADA consensus statement on this issue concluded that routine screening is not recommended.
- Providers should use clinical judgment in this area. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and increase the intensity and duration slowly.

Diabetes Treatment Tools
for Sports and Exercise

Basal-Bolus Insulin Therapy: Detemir or Glargine at HS and Mealtime Aspart, Lispro, or Glulisine

Insulin Pumps

Variable Basal Rate: Insulin Pump

Continuous Glucose Monitor

Transmitter then sends these values wirelessly to the insulin pump every 5 minutes, where data can be viewed and acted on* in real-time.
Energy Usage in Exercise:

Considerations in Diabetes

Energy Usage in Exercise

- Anaerobic system
 - Stored ATP and muscle glycogen
 - Fuel muscle for up to 2 minutes
 - Powerlifting, sprints, pitching (short burst exertion)
 - Stop and start events, 800 meter runs, 200 meter swimming events
 - Doesn’t reduce blood glucose
- Aerobic system
 - Steady supply of ATP from glucose needed to supply muscle for prolonged or endurance activities
 - ATP generated from glucose source and fatty acids from muscle triglyceride
 - Does reduce blood glucose
- Optimal cardiovascular fitness,
 - Aerobic component,
 - Regular resistance training into your exercise routine as recommended

Relative energy system involvement for competitive sports.

- Anaerobic
 - Weightlifting, Powerlifting
 - Track (sprinting and field events), Diving (platform & springboard)
 - Golf, American football, Swimming (sprints), Gymnastics, Fencing
 - Swimming, Baseball, Softball, Volleyball, Ice hockey, Track cycling
 - Basketball, Soccer, Tennis, Lacrosse
 - Speed skating (500-1000 m)
 - Skiing (slalom & downhill), Field hockey
 - Rowing
 - Running (middle distance), Speed skating (>1500 m)
 - Road cycling
 - In-line skating
 - Cross country skiing
 - Race walking
 - Marathon running
 - Iron Man triathlon
 - Ultra-marathon running
Exercise Effect on Glucose

- Increase in glucose raising hormones
 - Intense exercise
- Increase in insulin sensitivity (higher insulin induced glucose uptake in muscle)
 - Persistent routine exercise
- Glucose consumption
 - Especially longer duration exercise

Hormones With Glucose Raising Effects During Exercise

- Catecholamines (adrenalin)
 - Epinephrine
 - Norepinephrine
- Growth Hormone
- Cortisol

- Exercise (especially intense) can cause an increase in glucose due to an elevation of the glucose raising hormones

Variables Influencing Blood Glucose Response to Exercise

- Exercise Characteristics
 - Type of exercise
 - Intensity
 - Duration
 - How quickly advance with training (progression)
Diabetes and Sports/Exercise: Management Principles

- Start exercise/sport in a safe glucose range
 - Aim for >100 and <200 mg/dl (aim for 150 mg/dl)
 - Take extra insulin if high
 - Take carb if low
- Reduce insulin level if appropriate
 - Depending on type of exercise
- Monitor, monitor, monitor
 - Before, during, and after exercise
 - You have a unique exercise response
- Support glucose level with extra carb if appropriate

Suggested Sample Regimen for Athlete with Diabetes for Practice or Competition

- Check Blood Glucose Prior to Practice or Event
- Check Blood Glucose at Break/End of Quarter/Period/Inning/Etc.
- Most Athletes should try to keep Blood Glucose ~ 150 mg/dl for competition
- Reduce insulin if appropriate
 - Bolus reduction if exercise 1-4 hour post meal
 - Basal reduction if exercise is prolonged
- Snack every 30-60” during practice/event
- Hyperglycemia and/or Hypoglycemia is not only potentially damaging/dangerous, they AFFECT PERFORMANCE
Adjusting Insulin for Sports Activities

■ Running
 – If the glucose is >200-250 mg/dl prior to the run, need sliding scale insulin to lower
 – Reduce the bolus or fast acting insulin for the meal prior to running by 10-30%
 – Reduce the basal or long acting insulin by 20-50%
 – Consider 15-20 gms of carbohydrate supplement for every 30-45° of running

Adjusting Insulin for Sports Activities

■ Swimming
 – If the glucose is >200-250 mg/dl prior to swimming, need sliding scale insulin to lower
 – Reduce the bolus or fast acting insulin for the meal prior to swimming by 10-30%
 – Reduce the basal or long acting insulin by 20-50%
 – Consider 15-30 gms of carbohydrate supplement for every 60° of swimming
Adjusting Insulin for Sports Activities

Basketball
- If the glucose is >200-250 mg/dl prior to swimming, need sliding scale insulin to lower
- Reduce the bolus or fast acting insulin for the meal prior to playing by 10-30%
- Reduce the basal or long acting insulin by 20-50%
- Consider 15-30 gms of carbohydrate supplement for every 60° of play

Colberg, Sheri. Diabetic Athlete's Handbook

Basal-Bolus Insulin Therapy: Detemir or Glargine at HS and Mealtime Aspart, Lispro, or Glulisine

Variable Basal Rate: Insulin Pump
ExCarbs

- ExCarbs - carbs needed to replace carbs burned by physical activity or exercise
- Eating excarbs before, during, and/or after the exercise, helps maintain blood sugar control
 - No insulin is taken to compensate for ExCarbs.
- ExCarbs can guide insulin dose reductions
 - For those who want to lose weight, and
 - For those who don’t want to eat large amounts of carbohydrates during long periods of exercise
- Choices—once known # of ExCarbs needed for an exercise:
 - 1. Eat all of these ExCarbs (advantages: easy to do, good for maintaining your current weight)
 - 2. Use the ExCarbs as a guide to lowering insulin doses (advantages: good for weight loss, great for limiting quantities of food during long periods of exercise)
 - 3. A combination of the two.

ExCarbs – Carbs Needed For Exercise

<table>
<thead>
<tr>
<th>Activity</th>
<th>150 lbs.</th>
<th>165 lbs.</th>
<th>200 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseball</td>
<td>29</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>badminton</td>
<td>26</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>bicycling</td>
<td>19</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>bowling</td>
<td>22</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>bowling</td>
<td>25</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>canoeing</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>cycling</td>
<td>23</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>canoeing</td>
<td>19</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>erossing</td>
<td>14</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>soccer</td>
<td>23</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>squash</td>
<td>14</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>tennis</td>
<td>22</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>volleyball</td>
<td>26</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>wrestling</td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>wading</td>
<td>30</td>
<td>32</td>
<td>34</td>
</tr>
</tbody>
</table>
ExCarbs Conversions

- Carla’s 68 grams of ExCarbs:
 - can be eaten as free carbs
 - can be converted into insulin to reduce carb boluses or basal rates

- 68 gr carb:
 - 14 gm per 1u (Carla’s carb factor) = 4.9 units

Table 23.9 translates exercises with different intensity and duration into combinations of likely carb intakes and bolus or basal reductions

Translate Intensity & Duration Into Extra Carbs Or Bolus Or Basal Reduction

| Exercise Intensity | Carb Intake Factor
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>0.5</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.75</td>
</tr>
<tr>
<td>Hard</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Carla’s run after breakfast was between moderate – so she lowered her breakfast bolus by 30%, ate an extra 12 grams of free carb before her run and 26 grams afterward.

Distance Runner:
45 y/o Male with Type 1 Diabetes

- When I initially was trying to figure out insulin/carb intake for training I used the insulin reduction rule I read about in The Diabetic Athlete book. This didn’t really work for me. I ended up with very high numbers after a run.
- Here is what I do now:
 - My am runs are 5 miles and take a little over 40 minutes. If my sugar is normal I do nothing. No carb intake and no adjustment of my basal. This am started at 116 ended at 120.
 - If I run the same distance but have to resume my run due to hypoglycemia then I adjust my basal.
 - Weekends runs are longer—up to about 18 miles. I eat breakfast about 50 gm of carbohydrates and take about 2.4 of a normal bolus dose and leave the basal alone.
 - I now use the constant glucose monitoring to guide intake during the run.
 - Usually at 30-40 minutes my numbers start to fall and I take a glucose gel, 100 mg of maltodextin and fructose.
 - I only need to repeat this if the run is going to exceed 1 hr 20 min or so. I like to run with insulin on board and control the sugar with insulin.
 - Cutting insulin seems to tire me much easier.
 - Bike rides last about 1.5 hours. I use the same breakfast strategy and add glucose gels as needed based on my monitor.
 - The constant glucose monitoring makes everything a lot easier.
Distance Runner: 48 y/o Female with Type 1 Diabetes

- I have been a runner since 1995 and a Type 1 diabetic since 1997 (on the pump in 1998).
- I used to simply be a casual jogger (3 miles every other day), but in 1999, after I felt I had a good handle on how to manage my diabetes with an insulin pump, I decided to train for longer distances.
- After much trial and error, I have since used the following guidelines to run numerous 30Ks (18.6 miles each), six marathons (26.2 miles each), and two 50K ultras (31 miles each).
- I am currently in training to run another 50K on April 15th. While I am not a top overall finisher, I usually place somewhere in the top 5 in my age group, especially in the ultras.
- I always run in the mornings, usually well before dawn, unless I am doing a race, which usually starts at 7am. I think it is easier to do this, since I can monitor the lowering effect of exercise on my blood sugar throughout the remainder of the day, and not have to worry about it too much overnight.

For a typical weekday morning run (5-6 miles):
- 1. Test my fasting blood sugar, if it is not around 130, I will take some glucose inhaler up to 0.1 units of insulin to lower it (0.1 units for each 10 over 130).
- 2. Use the temporary basal rate to set my basal rate to 0.2 units/hour for 1.5 hours.
- 3. Drink 20 ounces of water, stretch, and head out the door.
- 4. After a run, stretch, and drink 20 more ounces of water.
- 5. Shower and eat a healthy breakfast (usually oatmeal, soy milk, and fruit).

For a longer training run/race (anything from 6 to 31 miles):
- 1. Test my fasting blood sugar (deme or down). If it is a race day, I usually eat a bagel (15g carbs) the night before to keep it around 100.
- 2. Use the temporary basal rate to set my basal rate to 0.2 units/hour for the entire length of time I am going to be running. My normal basal rate changes to 0.05 units/hour of 6am and then to 0.30 units/hour of dawn, as I don’t normally keep the temporary on past the end of my long run/race. I tend to have in with my blood sugar lower, and if you do this temporary I tend to take each.
- 3. Drink 20 ounces of water, stretch, and head on the run/race.
- 4. During the race, I will take additional glucose (up to 50 grams of glucose) using a bolus of 0.5 units of insulin. These dosages will give me 22 grams of carbs each and I usually will wash them down with 2 ounces of water (the further distances) or 12 ounces of HammerHead Sports drink (which has an additional 12 grams of carbs).
- 5. After the Finish, walk, stretch, test my blood sugar, and eat. Depending on the race, I may do another insulin check during the race, but I have gotten quite good at consistently knowing where I am based on how I feel.
- I tend to run two days on, then cross-train the third day with weights, core-strengthening exercises, and stretches.

Exercise/Sports Special Considerations

- 32y/o on pump
 - Going to Port A to play in a multiday volleyball tournament
 - ? Stay on pump
 - Plan
 - Convert to Lantus/Levemir
 - Tabulate total basal dose and give as Lantus/Levemir, ½ dose am and ½ dose pm
 - Convert back to pump morning after event complete
Resources

- Diabetestrainingcamp.com
- Fit4D.com
- "Pumping Insulin"
- Diabetic Athlete’s Handbook