BLOOD GLUCOSE CONTROL WITH SPORTS & FITNESS ACTIVITIES

Presented by: Gary Scheiner MS, CDE
Owner/Clinical Director of Integrated Diabetes Services
Wynnewood, PA, (877) 735-3648, gary@integrateddiabetes.com
What Is My Favorite Sport?

A. Miniature Golf
B. Accounting
C. Basketball
Objectives

- Optimize glycemic control to enhance physical/athletic performance
- Prevent hypoglycemia during and after physical activity
- Prevent exercise-induced hyperglycemia, ketosis and DKA
- Manage the logistics of wearing an insulin pump during physical activity
Blood Glucose Affects:

- Strength
- Stamina
- Speed/Agility
- Flexibility
- Safety
- Mental Sharpness

Sources:
What BG Is Optimal?

Exercise Performance

Mmol: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Overall Glucose Management Also Counts!

Prior Hyperglycemia Affects:

✓ Hydration
✓ Sleep Quality

Prior Hypoglycemia Affects:

✓ Glycogen Storage
✓ Sleep Quality
Hypoglycemia
Prevention
Fuel Utilization During Exercise

<table>
<thead>
<tr>
<th>1st 5-10 seconds</th>
<th>10 sec - 10 min</th>
<th>~ 10 – ~30 min.</th>
<th>~ 30 min onward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stored ATP/CP</td>
<td>Anaerobic Glycolysis</td>
<td>Oxidative (aerobic) metabolism</td>
<td></td>
</tr>
<tr>
<td>IM glucose</td>
<td>Hepatic Glycogenolysis</td>
<td>Hepatic Gluconeogenesis</td>
<td>(FFA)</td>
</tr>
</tbody>
</table>

Likelihood of Hypoglycemia: very low moderate very high
Hypoglycemia: low high

Scheiner, Gary, MS CDE
Energy Sources During Exercise

Substrate vs. Duration

Substrate vs. Intensity

BG drops more rapidly during 15-60 minute phase of prolonged exercise

BG drops more rapidly as exercise intensity increases

Schaeiner, Gary, MS CDE
Hormonal Responses to Exercise (non-diabetic)

- Insulin Secretion
- Counterregulatory Hormone Secretion
 - Epi/Nepi
 - Glucagon
 - GH, Cortisol

Substrate Breakdown
- Glycogenolysis
- Lipolysis
- A.A. Utilization

BG Holds Steady Despite
Glucose Utilization by Muscle
Hormonal Responses to Exercise (diabetes, using insulin)

Insulin Levels ↔ or ↔

Counterregulatory Hormone Action Suppressed

Substrate Breakdown Blocked
Glucose Uptake Accelerated

Hypoglycemia May Result

Scheiner, Gary, MS CDE
How Is Glucose Uptake Accelerated?
Who Is At Risk of Hypoglycemia?

- Premixed Insulin Users
- MDI/Pump Users
- Basal Insulin (Only) Users
- Meglitinide Users
- Sulfonylurea Users
- Combination Med Users
Insulin Adjustment Based on Timing and Duration

<table>
<thead>
<tr>
<th>Short Duration (<90 Minutes)</th>
<th>Activity Within 2 Hours After Meal</th>
<th>Activity Before or Between Meals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mealtime Bolus (Omit Meglitinide)</td>
<td>Snack Prior to Activity</td>
</tr>
</tbody>
</table>

Which is better for promoting weight loss?

- Exercise BEFORE eating?
- Exercise AFTER eating?
Insulin Adjustment Based on Timing and Duration

<table>
<thead>
<tr>
<th>Long Duration (>90 Minutes)</th>
<th>Activity Within 2 Hrs After Meal</th>
<th>Activity Before or Between Meals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✅ Mealtime Bolus (omit meglitinide)</td>
<td>Snack Prior to Activity</td>
</tr>
<tr>
<td></td>
<td>✅ Basal Rate</td>
<td>✅ Basal Rate (if using pump)</td>
</tr>
<tr>
<td></td>
<td>Snack at regular intervals</td>
<td>Snack at regular intervals</td>
</tr>
<tr>
<td></td>
<td>Watch for delayed-onset hypoglycemia</td>
<td>Watch for delayed-onset hypoglycemia</td>
</tr>
</tbody>
</table>
Insulin Adjustments

Meal Bolus Adjustment
(for post-meal activity)

- **Low Intensity Cardio** \(\downarrow \) 25%
- **Mod. Intensity Cardio** \(\downarrow \) 33%
- **High Intensity Cardio** \(\downarrow \) 50%
- **Competitive/Anaerobic ???**

Derived from: [Diabetes Care, vol. 24, no. 4, 4/2001, 625-630.](#)

Source: Scheiner, Gary: *Think Like A Pancreas*, Marlowe Publishing, NY, 2005
Insulin Adjustments

Basal Adjustment
(for > 90 min. activity)

- CSII: Basal rate 50% starting 1 hr pre-activity, or:
- CSII: Disconnect 1-hr prior, but reconnect hourly and bolus 50% of usual basal rate

(for day-long activity)

- CSII: basal 50% daytime, 25% nighttime
- Shots: basal insulin 25%

Source: Scheiner, Gary: Think Like A Pancreas, Marlowe Publishing, NY, 2005
Pump disconnection: Effect on basal insulin level

Basal insulin is a series of minute boluses.

Based on observed pharmacodynamics of rapid-acting insulin analogs
Pump disconnection: Effect on basal insulin level

Disconnection during 30 min. exercise (red box) eliminates bolus pulses for 30 minutes

Based on observed pharmacodynamics of rapid-acting insulin analogs
Pump disconnection: Effect on basal insulin level

Level of active basal insulin resulting from 30 minutes disconnection during exercise

Disconnection during a short exercise session has minimal effect!
Pump disconnection: Effect on basal insulin level

Disconnection during 2 hours of exercise (red box) eliminates bolus pulses for 120 minutes

Based on observed pharmacodynamics of rapid-acting insulin analogs
Pump disconnection: Effect on basal insulin level

Level of active basal insulin resulting from 2 hrs disconnection during exercise:

Disconnection for > 90 minutes has little benefit early on, and can result in a serious insulin deficiency later!
Pump Temp Basal: Effect on basal insulin level

Temp Basal -50% starting 1-hr prior to 2-hr exercise until 30 minutes before completion:

Based on observed pharmacodynamics of rapid-acting insulin analogs
Pump temp basal: Effect on basal insulin level

Level of active basal insulin from temp basal - 50% starting 1-hr prior until 30 minutes before completion of 2-hour exercise:

This approach results in a modest reduction in basal insulin throughout and immediately post-exercise.
Insulin Adjustment: Case Study

2-Hour Lacrosse Practice
(after dinner)

↓ Dinner bolus 50%

↓ Disconnect 1-hr pre-practice, re-connect hourly & bolus 50% of usual basal

Snack at midpoint (if BG appears to be dropping)
Snacking to prevent hypoglycemia

Basic Rules:

1. Snack prior to activity to prevent hypoglycemia
2. Adjust quantity based on pre-activity BG or direction of BG
 - BG low or dropping: ↑ usual carbs
 - BG OK or stable: usual carbs
 - BG High or rising: ↓ usual carbs
3. Snack at least once per hour during prolonged activity
4. Choose high-glycemic-index forms of carbohydrate
 - Sports drinks / Sweetened beverages
 - Dry cereal, pretzels, crackers

Source: Scheiner, Gary: Think Like A Pancreas, Marlowe Publishing, NY, 2005
Which approach keeps BG in range for the majority of the workout?

Source: Scheiner, Gary, MS CDE
Snacking to prevent a low

| Carbohydrate Requirement Per 60 Minutes of Activity (if no insulin adjustments are made) |
|---|---|---|---|---|---|
| 50 lbs (24 kg) | 100 lbs (48 kg) | 150 lbs (71 kg) | 200 lbs (95 kg) | 250 lbs (119 kg) |
| Dancing or Gymnastics | 8-12g | 17-23g | 25-35g | 34-46g | 42-57g |
| Tennis (singles) | 18-22g | 37-43g | 55-65g | 74-86g | 92-107g |
| Swimming (fast pace) | 22-25g | 44-50g | 65-75g | 88-100g | 110-125g |

Sources: Scheiner, Gary: Think Like A Pancreas, Marlowe Publishing, NY, 2005
Snacking to prevent a low

<table>
<thead>
<tr>
<th>Activity</th>
<th>50 lbs (24 kg)</th>
<th>100 lbs (48 kg)</th>
<th>150 lbs (71 kg)</th>
<th>200 lbs (95 kg)</th>
<th>250 lbs (119 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Up</td>
<td>3-7g</td>
<td>7-13g</td>
<td>10-20g</td>
<td>14-26g</td>
<td>17-32g</td>
</tr>
<tr>
<td>Brisk Walking (mall/theme park)</td>
<td>8-12g</td>
<td>17-23g</td>
<td>25-35g</td>
<td>34-46g</td>
<td>42-57g</td>
</tr>
<tr>
<td>Mowing (push-mower)</td>
<td>13-17g</td>
<td>27-33g</td>
<td>40-50g</td>
<td>54-66g</td>
<td>67-82g</td>
</tr>
</tbody>
</table>

Sources: Scheiner, Gary: *Think Like A Pancreas*, Marlowe Publishing, NY, 2005
Snacking to prevent low: Case Study

After School Tennis (85 lb/40 kg)

✓ Check BG prior
✓ Snack 20g (if BG 161-200 / 9-11mmol)
✓ Snack 30g (if BG 100-160 / 5-9mmol)
✓ Snack 40g (if BG <100 / 5mmol)
✓ No snack (if BG >200 / 11mmol)
✓ Addl. 20g snack after each hr of play
Variables:

Just a Few Factors that affect Blood Glucose During Exercise

- Active Insulin
- Infusion Site
- What You Ate
- Time of Day
- Emotional State
- Temp/Humidity
- Familiarity w/Activity
- Amt. Of Prior Activity
- Size/Number of Muscles Involved
- Duration
- Intensity

Watch Out for D’OH! (Delayed Onset Hypoglycemia)

➢ Following high-intensity exercise
➢ Following extended duration activity
➢ Due to replenishment of muscle glycogen stores, enhanced insulin sensitivity
➢ May occur up to 24 hours afterwards (typically 6-12 hours later)

D’OH! Prevention

- Keep records – track the patterns
- Decrease basal insulin (modestly) or meal/snack boluses post-activity
- “Free” Snacks (slow-acting carbs) following activity
D’OH! Prevention

- **Check BGs more frequently**
 - q 2 hrs during “high risk” period
 - 3am night following activity

- **Wear a continuous glucose monitor**

![Continuous Glucose Monitor Image]
Can Exercise Cause Rise in BG? Ketoacidosis?
Blood Glucose Homeostasis: The Grand Balancing Act

Adrenaline Raises BG!
Adrenaline Raises BG!

Activities that often produce a short-term blood glucose rise include:

- **Weight lifting** (high weight, low reps)
- **Sports w/ “bursts” of activity** (golf, baseball, martial arts)
- **Sprints** (running, swimming)
- **Judged performances** (gymnastics, skating)
- **Events in which WINNING is the primary objective**

Preventing / Offsetting BG Rise

✓ Keep Records to determine avg. BG rise

✓ Check BG 30-60 Min. Pre-Activity

✓ Bolus 30-60 min. prior to activity to offset rise (give 50% of usual amount required)

✓ Take 50% of Usual “Correction Dose” If High (reduce based on insulin-on-board)

Sources: Scheiner, Gary: Think Like A Pancreas, DaCapo Press, 2012
Snacking to prevent high: Case Study

Late-Morning Basketball; disconnects for 1 hour; BG typically rises from 100 to 300mg/dl (5.5 to 16.6 mmol).

✓ Check BG 30 min prior
✓ Bolus 50% of amount required to cover current BG (including IOB)
✓ Bolus 50% of amount needed to offset 200 mg/dl (11 mmol) rise
✓ Check BG at halftime; keep sugared drinks handy.
Post-Workout Rise?

Possible Causes:
- Pump suspension / disconnection
- Delayed food digestion
- Excess carbs during workout
- Latent stress hormones

Possible Solutions:
- Post-workout bolus
- Delay all (or part) of meal bolus
- Limit suspension / disconnection time
- Appropriate carb supplementation
How High is Too High?

No Such Number.

- Performance may suffer
- Hydrate
- Administer Rapid-Acting Insulin (i.m.?)

The Exception: Ketosis
What the *%!###! Is a KETONE???
Normal (Sufficient Insulin)

Source: Scheiner, Gary, *Think Like a Pancreas*, Marlowe Pub., NY, 2005
Abnormal (Insulin Deficiency)

possibly due to:

- Missed Injection
- Spoiled Insulin
- Poor Absorption
- Insufficient Dose
- Illness

- Pump Problem:
 - Occlusion
 - Air in Tubing
 - Canula Dislodgement
 - Extended Disconnection

Source: Scheiner, Gary, *Think Like a Pancreas*, Marlowe Pub., NY, 2005
Exercise During Insulin Deficiency

results: Higher Blood Sugar
+ More Ketones
+ Dehydration (urination, perspiration)

KETOACIDOSIS

Source: Scheiner, Gary, Think Like a Pancreas, Marlowe Pub., NY, 2005
To Prevent Ketoacidosis

✓ Check urine for ketones prior to exercise with unexplained high BG

✓ No exercise w/positive ketones (small or more on urine ketostix; >.5 mmol/l on blood β Ketone test)

✓ OK to exercise if nonketotic – take 50% of usual “correction” bolus and drink plenty of water

✓ Do not disconnect for more than 2 hours

Source: Diabetes Care vol. 30 Supplement 1: ADA Clinical Practice Recommendations 2007
Alternatives to extended pump disconnection

Wear It!

- Clip to tight clothing
- Sport Pack
- Fanny Pack
- Backpack Harness
Infusion Set Adhesion During Exercise

✓ Smart Set Placement
 ➢ Under tight clothing
 ➢ Body part w/less skin movement

✓ Skin prep agent w/adhesive
 (IV Prep, Skin Prep, Mastisol)

✓ Tape over site (Smith+Nephew, 3M)

✓ Antiperspirant (Hypercare 20% AlCl solution, Stratus Pharma.)
Pump & Temperature Extremes During Exercise

Cold:
Generally not a concern when pump is worn against body

Heat:
Insulin analogs can denature if:
- Exposed to > 98°F (36°C)
- Stored or worn > 86°F (30°C) for extended periods

Pump function OK under most conditions

Sources: insulin package inserts, insulin pump manufacturers
Pump & Temperature Extremes During Exercise

“Cool” Ideas:

✓ Keep pump out of direct sunlight
 • Wear under clothing
 • Store in a cool place when disconnected
 • Don’t forget the tubing!!!

✓ Spend less time in extreme heat
 • Get into a/c and shade periodically
 • Humidity is not a factor

✓ FRIO Cooling Case
There is nothing you can’t accomplish...

If you think like a pancreas!