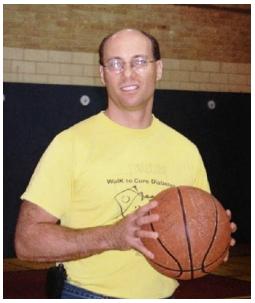
JDRF typeone nationsummit


BLOOD GLUCOSE CONTROL WITH SPORTS & FITNESS ACTIVITIES

Presented by: Gary Scheiner MS, CDE

Owner/Clinical Director of Integrated Diabetes Services Wynnewood, PA, (877) 735-3648, gary@integrateddiabetes.com

What Is My Favorite Sport?

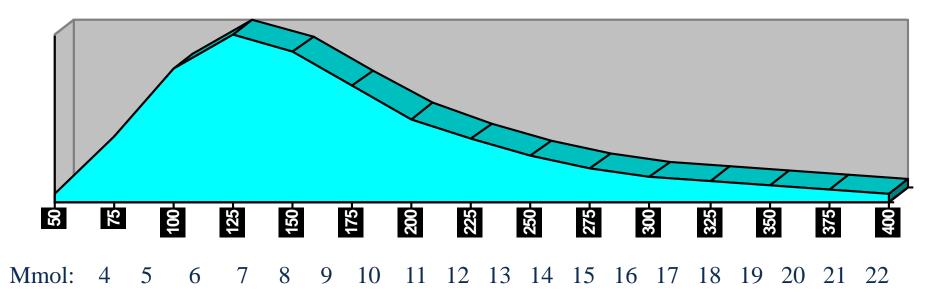
- A. Miniature Golf
- B. Accounting
- c. Basketball

JDRF typeonenationsummit

Objectives

- Optimize glycemic control to enhance physical/athletic performance
- Prevent hypoglycemia during and after physical activity
- Prevent exercise-induced hyperglycemia, ketosis and DKA
- Manage the logistics of wearing an insulin pump during physical activity

Blood Glucose Affects:


✓ Strength
 ✓ Stamina
 ✓ Speed/Agility
 ✓ Flexibility
 ✓ Safety
 ✓ Mental Sharpness

Sources: Colberg, Sheri: <u>The Diabetic Athlete</u>, Human Kinetics, Champaign, IL, 2001. Walsh J et al: <u>Using Insulin</u>, Torrey Pines Press, San Diego, 2003. Powers & Howley: <u>Exercise Physiology</u>, Wm C Brown Publishers, 1990. Diabetes Exercise & Sports Association North American Conferences, 2004 through 2007

What BG Is Optimal?

Exercise Performance

Source: Diabetes Exercise & Sports Association North American Conferences, 2004 through 2007

Overall Glucose Management Also Counts!

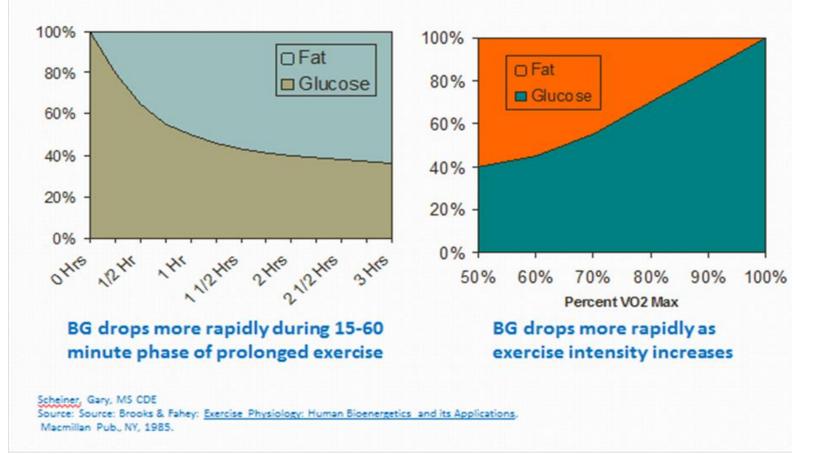
Prior Hyperglycemia Affects:
✓ Hydration
✓ Sleep Quality
Prior Hypoglycemia Affects:
✓ Glycogen Storage
✓ Sleep Quality

Hypoglycemia Prevention

Fuel Utilization During Exercise

1 st 5-10 seconds	10 sec - ~ 10 min	~ 10 – ~30 min.	~ 30 min or	ward	
ךStored ATP/CP	Anaerobic <u>Glycolysis</u>	Oxidative (aerobic) metabolism			
	IM glucose	Hepatic Glycogenolysis	Hepatic Gluconeogenesis	(FFA)	

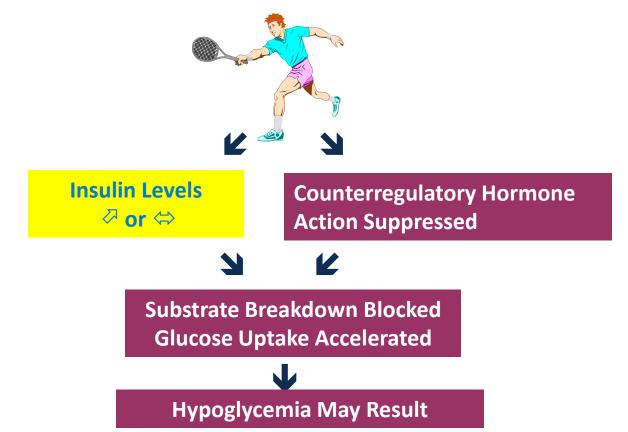
Likelihood of	very low		moderate		very high
Hypoglycemia:		low	ł	high	


Scheiner, Gary, MS CDE Source: Source: Brooks & Fahey: <u>Exercise Physiology: Human Bioenergetics and its Applications</u>, Macmillan Pub., NY, 1985.

Energy Sources During Exercise

Substrate vs. Duration

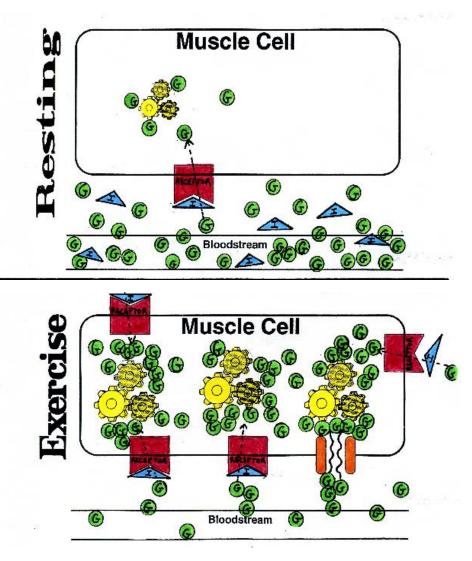
Substrate vs. Intensity



Hormonal Responses to Exercise (non-diabetic)

Insulin Counterregulatory Hormone Secretion 🛧 Secretion $\Psi\Psi$ • Epi/Nepi • Glucagon • GH, Cortisol Substrate Breakdown Glycogenolysis • Lipolysis • A.A. Utilization **BG Holds** Steady Despite **↑** Glucose Utilization by Muscle **JDRF** typeone

PROVING LIVES, CURING TYPE 1 DIABE


Hormonal Responses to Exercise (diabetes, using insulin)

Scheiner, Gary, MS CDE Source: Brooks & Fahey: <u>Exercise Physiology: Human Bioenergetics and its Applications</u>, Macmillan Pub., NY, 1985.

How Is Glucose Uptake Accelerated?

Typeonenationsummit

Who Is At Risk of Hypogylcemia?

Premixed Insulin Users MDI/Pump Users

Basal Insulin (Only) Users

Meglitinide Users

Sulfonylurea Users

Combination Med Users

Insulin Adjustment Based on Timing and Duration

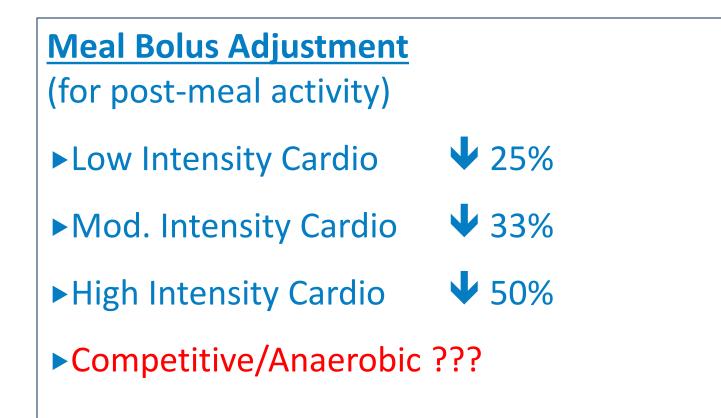
	Activity Within 2 Hours After Meal	Activity Before or Between Meals
Short Duration (<90 Minutes)		Snack Prior to Activity

Derived from: <u>Diabetes Care</u>, vol. 24, no. 4, 4/2001, 625-630.

Which is better for promoting weight loss?

Exercise BEFORE eating?

Exercise AFTER eating?



Insulin Adjustment Based on Timing and Duration

	Activity Within 2 Hrs After Meal	Activity Before or Between Meals
Long Duration (>90 Minutes)	 ✓ Mealtime Bolus (omit meglitinide) ✓ Basal Rate Snack at regular intervals Watch for delayed-onset hypoglycemia 	 Snack Prior to Activity ◆ Basal Rate (if using pump) Snack at regular intervals Watch for delayed-onset hypoglycemia

Insulin Adjustments

Derived from: <u>Diabetes Care</u>, vol. 24, no. 4, 4/2001, 625-630.

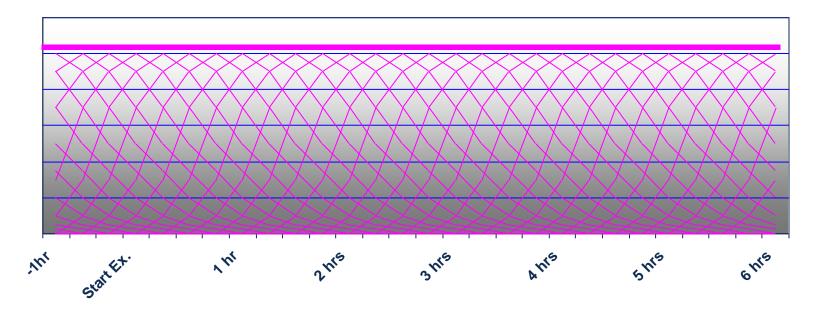
Source: Scheiner, Gary: Think Like A Pancreas, Marlowe Publishing, NY, 2005

Insulin Adjustments

Basal Adjustment

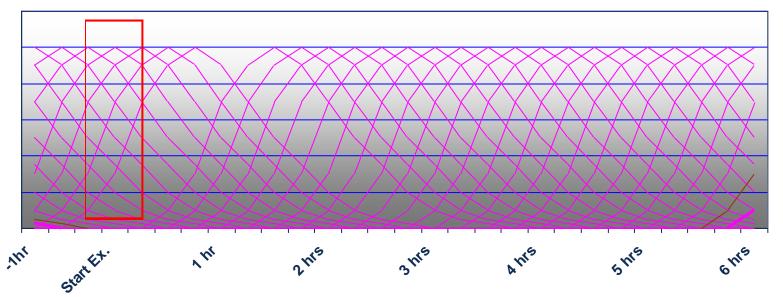
(for > 90 min. activity)

- ► CSII: ↓ Basal rate 50% starting 1 hr pre-activity, or:
- CSII: Disconnect 1-hr prior, but reconnect hourly and bolus 50% of usual basal rate

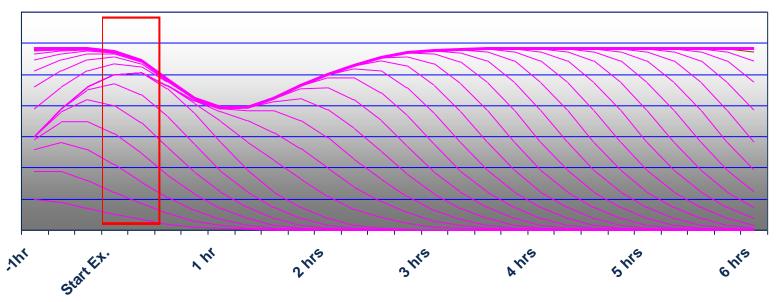

(for day-long activity)

- ▶ CSII: ↓ basal 50% daytime, 25% nighttime
- ► Shots: ♥ basal insulin 25%

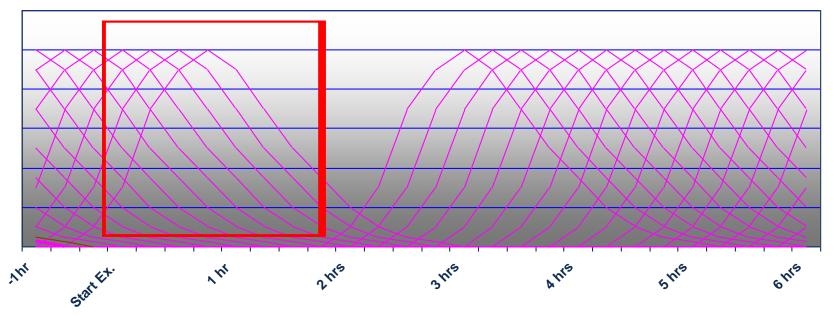
Derived from: <u>Diabetes Care</u>, vol. 24, no. 4, 4/2001, 625-630. Source: Scheiner, Gary: <u>Think Like A Pancreas</u>, Marlowe Publishing, NY, 2005


Basal insulin is a series of minute boluses.

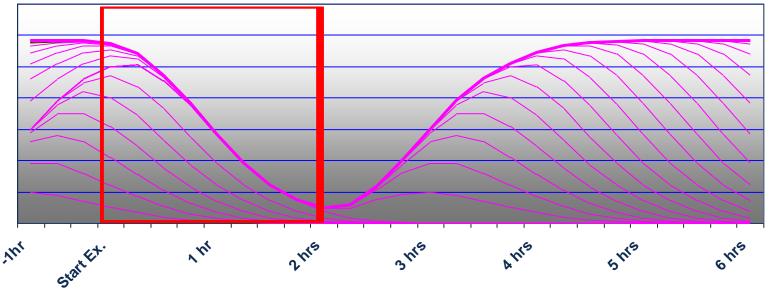
Based on observed pharmacodymanics of rapid-acting insulin analogs


Disconnection during 30 min. exercise (red box) eliminates bolus pulses for 30 minutes

Based on observed pharmacodymanics of rapid-acting insulin analogs

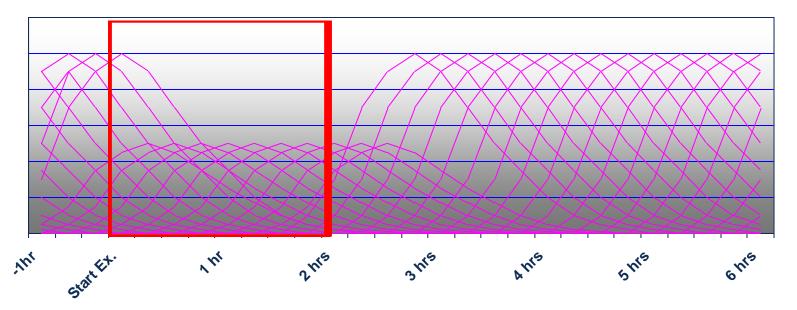

Level of active basal insulin resulting from 30 minutes disconnection during exercise

Disconnection during a short exercise session has minimal effect !


Disconnection during 2 hours of exercise (red box) eliminates bolus pulses for 120 minutes

Based on observed pharmacodymanics of rapid-acting insulin analogs

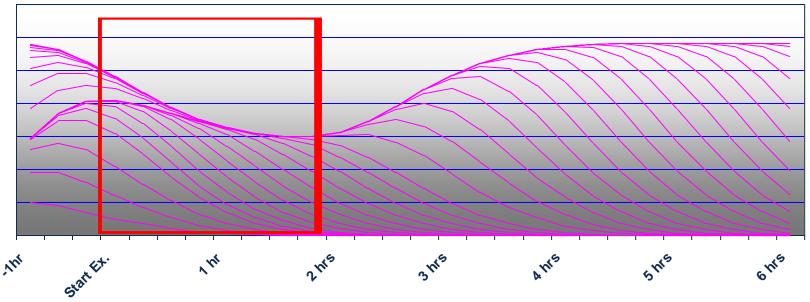
Level of active basal insulin resulting from 2 hrs disconnection during exercise:



Disconnection for > 90 minutes has little benefit early on, and can result in a serious insulin deficiency later!

Pump Temp Basal: Effect on basal insulin level

Temp Basal -50% starting 1-hr prior to 2-hr exercise until 30 minutes before completion:



Based on observed pharmacodymanics of rapid-acting insulin analogs

Pump temp basal: Effect on basal insulin level

Level of active basal insulin from temp basal -50% starting 1-hr prior until 30 minutes before completion of 2-hour exercise:

This approach results in a modest reduction in basal insulin throughout and immediately post-exercise.

Insulin Adjustment: Case Study

2-Hour Lacrosse Practice

(after dinner)

↓ Dinner bolus 50%

Disconnect 1-hr pre-practice, re-connect hourly & bolus 50% of usual basal

Snack at midpoint (if BG appears to be dropping)

Snacking to prevent hypoglycemia

Basic Rules:

- Snack prior to activity to prevent hypoglycemia
- **O** Adjust quantity based on pre-activity BG or *direction* of BG

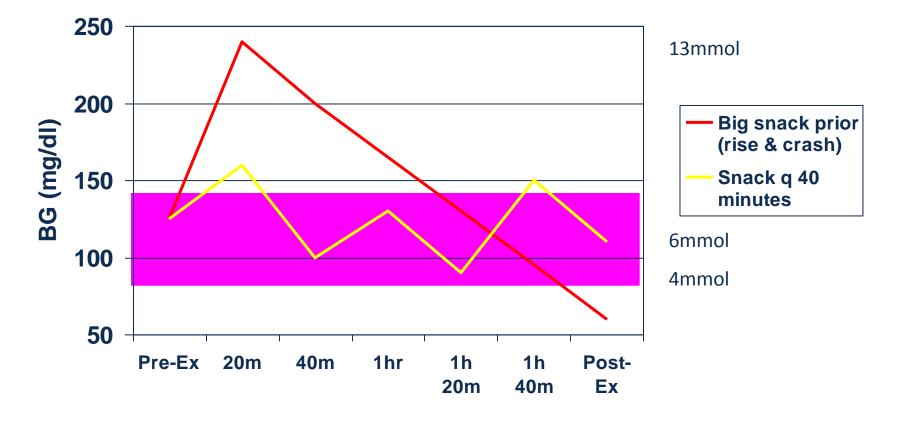
➢ BG low or dropping: ☆ usual carbs

BG OK or stable: usual carbs

 \blacktriangleright BG High or rising: \clubsuit usual carbs

Snack at least once per hour during prolonged activity

O Choose high-glycemic-index forms of carbohydrate


Sports drinks / Sweetened beverages

Dry cereal, pretzels, crackers

Source: Scheiner, Gary: <u>Think Like A Pancreas</u>, Marlowe Publishing, NY, 2005

Which approach keeps BG in range for the majority of the workout?

Source: Scheiner, Gary, MS CDE

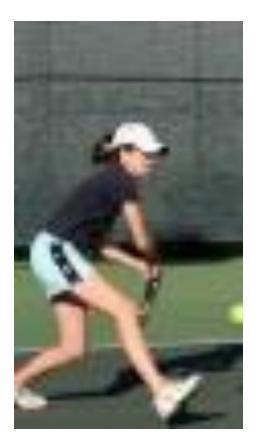
Snacking to prevent a low

	Carbohydrate Requirement Per <u>60 Minutes</u> of Activity (if no insulin adjustments are made)				
	50 lbs (24 kg)	100 lbs (48 kg)	150 lbs (71 kg)	200 lbs (95 kg)	250 lbs (119 kg)
Dancing or Gymnastics	8-12g	17-23g	25-35g	34-46g	42-57g
Tennis (singles)	18-22g	37-43g	55-65g	74-86g	92-107g
Swimming (fast pace)	22-25g	44-50g	65-75g	88-100g	110-125g

Sources: Scheiner, Gary: <u>Think Like A Pancreas</u>, Marlowe Publishing, NY, 2005 Walsh, John and Roberts, Ruth: <u>Pumping Insulin, 4th ed.</u>, Torrey Pines Press, San Diego, 2006. Heyward, Vivian: <u>Designs for Fitness</u>, Macmillan Publishing, NY, 1984.

Snacking to prevent a low

	Carbohydrate Requirement Per <u>60 Minutes</u> of Activity (if no insulin adjustments are made)				
	50 lbs (24 kg)	100 lbs (48 kg)	150 lbs (71 kg)	200 lbs (95 kg)	250 lbs (119 kg)
Cleaning Up	3-7g	7-13g	10-20g	14-26g	17-32g
Brisk Walking (mall/theme park)	8-12g	17-23g	25-35g	34-46g	42-57g
Mowing (push- mower)	13-17g	27-33g	40-50g	54-66g	67-82g


Sources: Scheiner, Gary: Think Like A Pancreas, Marlowe Publishing, NY, 2005

Walsh, John and Roberts, Ruth: <u>Pumping Insulin, 4th ed.</u>, Torrey Pines Press, San Diego, 2006.

Heyward, Vivian: Designs for Fitness, Macmillan Publishing, NY, 1984.

Snacking to prevent low: Case Study

After School Tennis (85 lb/40 kg)

- ✓ Check BG prior
- ✓ Snack 20g (if BG 161-200 / 9-11mmol)
- ✓ Snack 30g (if BG 100-160 / 5-9mmol)
- ✓ Snack 40g (if BG <100 / 5mmol)
- ✓ No snack (if BG >200 / 11mmol)
- ✓ Addl. 20g snack after each hr of play

TORF typeonenationsummit

Just a Few Factors that affect Blood Glucose During Exercise

- Active Insulin
- Infusion Site
- What You Ate
- Time of Day
- Emotional State
- Temp/Humidity

- Familiarity w/Activity
- Amt. Of Prior Activity
- Size/Number of Muscles Involved
- Duration
- Intensity

Sources: Walsh J et al: <u>Using Insulin</u>, Torrey Pines Press, San Diego, 2003. Scheiner, Gary: <u>Think Like A Pancreas</u>, Marlowe Publishing, NY, 2005.

Watch Out for D'OH! (Delayed Onset Hypoglycemia)

- Following high-intensity exercise
- Following extended duration activity
- Due to replenishment of muscle glycogen stores, enhanced insulin sensitivity
- May occur up to 24 hours afterwards (typically 6-12 hours later)

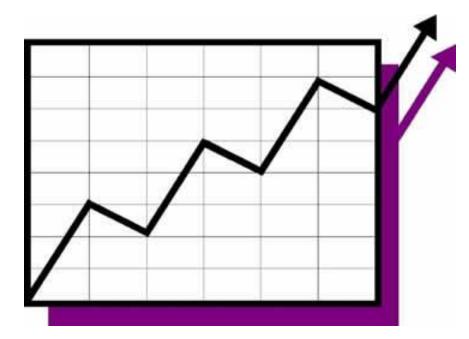
D'OH! Prevention

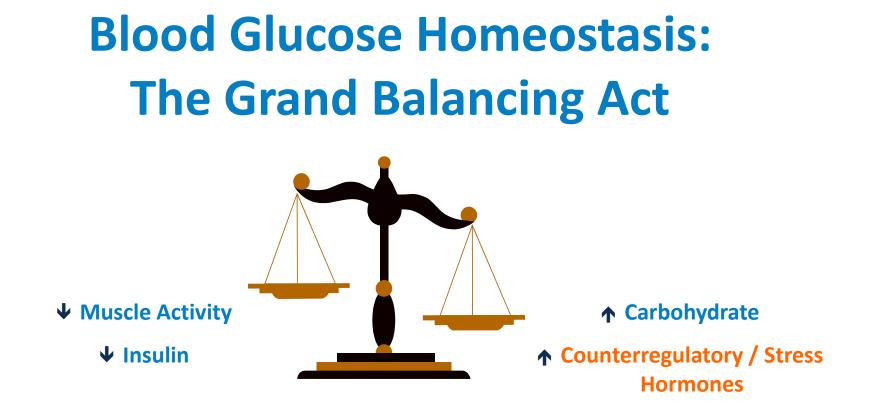
- >Keep records track the patterns
- Decrease basal insulin (modestly) or meal/snack boluses post-activity
- "Free" Snacks (slowacting carbs) following activity

D'OH! Prevention

Check BGs more frequently

✓ q 2 hrs during "high risk" period✓ 3am night following activity


>Wear a continuous glucose monitor


Can Exercise Cause

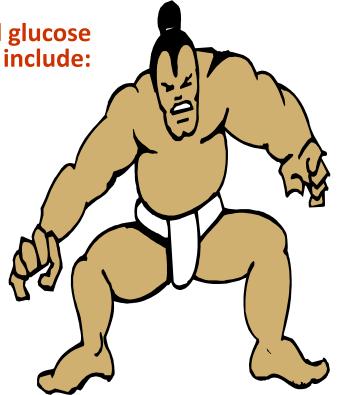
Rise in BG?

Ketoacidosis?

Adrenaline Raises BG!

Adrenaline Raises BG!

Activities that often produce a short-term blood glucose rise include:


Weight lifting (high weight, low reps)

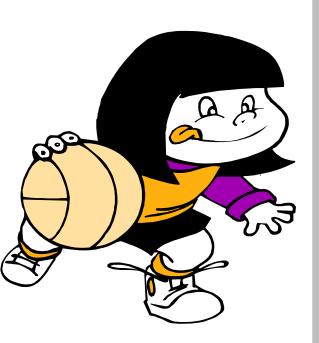
Sports w/ "bursts" of activity (golf, baseball, martial arts)

Sprints (running, swimming)

Judged performances (gymnastics, skating)

First Events in which WINNING is the primary objective

Sources: Colberg, Sheri: The Diabetic Athlete, Human Kinetics, Champaign, IL, 2001.


Preventing / Offsetting BG Rise

- ✓ Keep Records to determine avg. BG rise
- ✓ Check BG 30-60 Min. Pre-Activity
 - ✓ Bolus 30-60 min. prior to activity to offset rise (give 50% of usual amount required)
 - ✓ Take 50% of Usual "Correction Dose" If High (reduce based on insulin-on-board)

Sources: Scheiner, Gary: Think Like A Pancreas, DaCapo Press, 2012

Snacking to prevent high: Case Study

Late-Morning Basketball; disconnects for 1 hour; BG typically rises from 100 to 300mg/dl (5.5 to 16.6 mmol).

- ✓ Check BG 30 min prior
- ✓ Bolus 50% of amount required to cover current BG (including IOB)
- ✓ Bolus 50% of amount needed to offset 200 mg/dl (11 mmol) rise
- Check BG at halftime; keep sugared drinks handy.

Post-Workout Rise?

Possible Causes:

- Pump suspension / disconnection
- Delayed food digestion
- Excess carbs during workout
- Latent stress hormones

Possible Solutions:

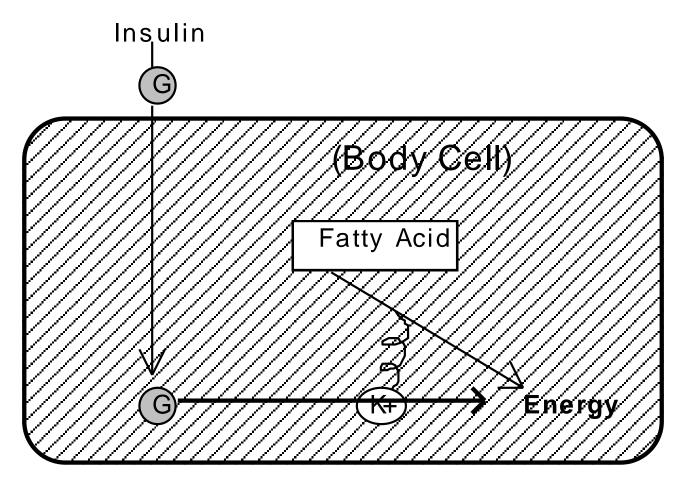
- Post-workout bolus
- Delay all (or part) of meal bolus
- Limit suspension / disconnection time
- Appropriate carb supplementation

How High is Too High?

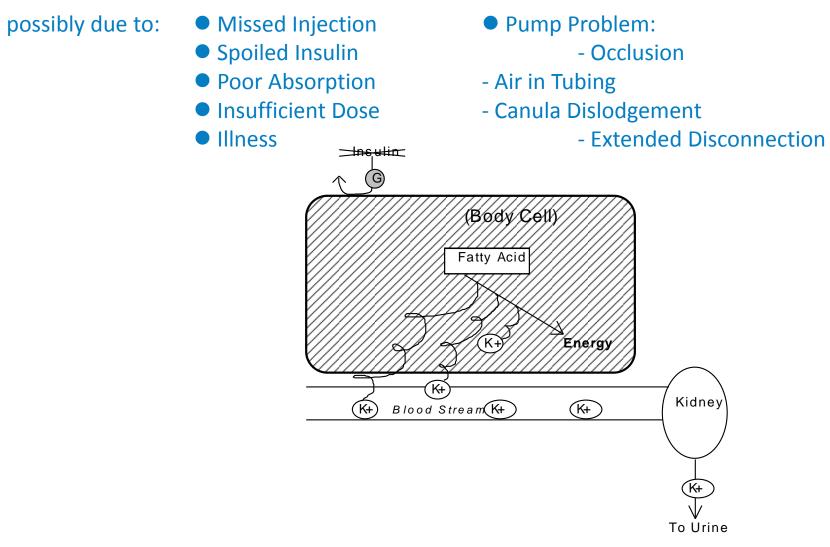
No Such Number.

✓ Performance may suffer
 ✓ Hydrate
 ✓ Administer Rapid-Acting Insulin (i.m.?)

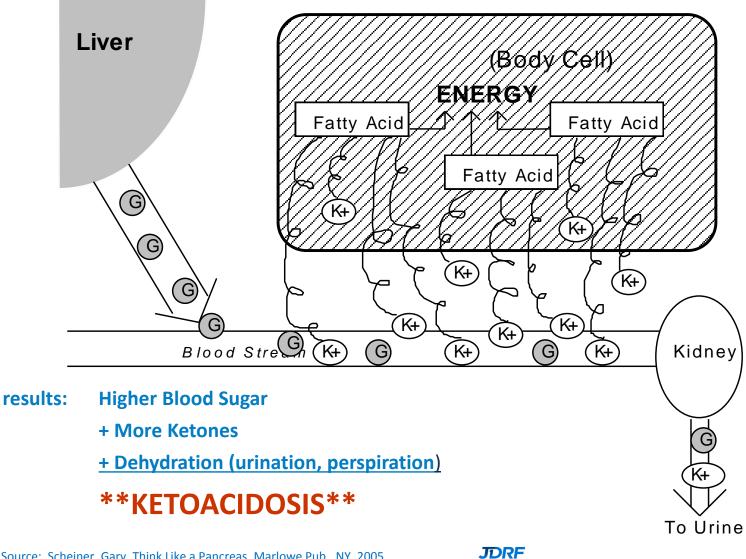
The Exception: Ketosis


What the *&!%#! Is a

KETONE???


Normal (Sufficient Insulin)

Source: Scheiner, Gary, Think Like a Pancreas, Marlowe Pub., NY, 2005


Abnormal (Insulin Deficiency)

Source: Scheiner, Gary, Think Like a Pancreas, Marlowe Pub., NY, 2005

Exercise During Insulin Deficiency

typeone

MPROVING LIVES. CURING TYPE 1 DIABETES

Source: Scheiner, Gary, Think Like a Pancreas, Marlowe Pub., NY, 2005

To Prevent Ketoacidosis

- ✓ Check urine for ketones prior to exercise with <u>unexplained</u> high BG
- ✓ No exercise w/positive ketones (small or more on urine ketostix; >.5 mmol/l on blood ß Ketone test)
- ✓ OK to exercise if nonketotic take 50% of usual "correction" bolus and drink plenty of water
- ✓ Do not disconnect for more than 2 hours

Source: Diabetes Care vol. 30 Supplement 1: ADA Clinical Practice Recommendations 2007

Alternatives to extended pump disconnection

Wear It!

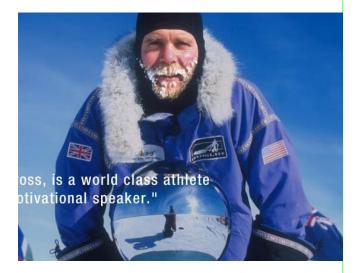
- \checkmark Clip to tight clothing
- ✓ Sport Pack
- ✓ Fanny Pack
- ✓ Backpack Harness

neter in his abdomen vife [Stacey] finally It keeps my blood vays had the same sized debasere last to apice was v I can come ning." because he felt n and out of seaar he was 8-8 with o months.) He now Stacey, at a facility g diet-he eats six bars-which has complex in Lake-Amanda Cherrin

Infusion Set Adhesion During Exercise

- ✓ Smart Set Placement
 - Under tight clothing
 - Body part w/less skin movement
- ✓ Skin prep agent w/adhesive (IV Prep, Skin Prep, Mastisol)
- ✓ **Tape over site** (Smith+Nephew, 3M)
- ✓ Antiperspirant (Hypercare 20% AlCl solution, Stratus Pharma.)

Pump & Temperature Extremes During Exercise


Cold:

Generally not a concern when pump is worn against body

Heat:

Insulin analogs can denature if:

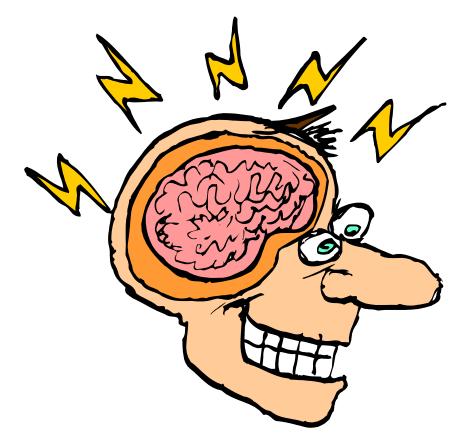
> Exposed to > 98°F (36C)

Stored or worn > 86°F (30C) for extended periods
Pump function OK under most conditions

Pump & Temperature Extremes During Exercise

"Cool" Ideas:

- ✓ Keep pump out of direct sunlight
 - Wear under clothing
 - Store in a cool place when disconnected
 - Don't forget the tubing!!!


✓ Spend less time in extreme heat

- Get into a/c and shade periodically
- Humidity is not a factor
- ✓ FRIO Cooling Case

There is nothing you can't accomplish...

If you think like a pancreas!

