Using CGM to Improve Outcomes

Gary Scheiner MS, CDE Owner & Clinical Director Integrated Diabetes Services LLC Wynnewood, PA AADE 2014 Diabetes Educator of the Year gary@integrateddiabetes.com (877) 735-3648

Making the Most of Continuous Glucose Monitoring

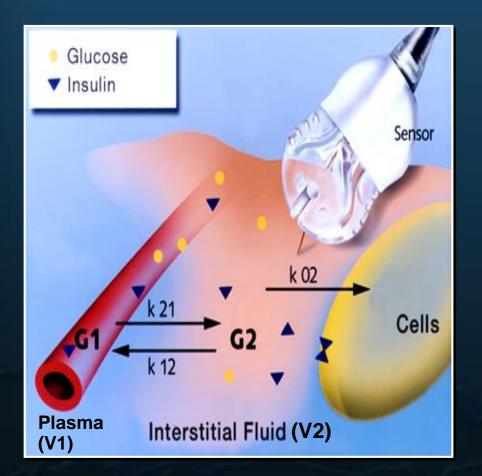
- 1. CGM Basics
- 2. Real-Time Use
- 3. Analyzing Downloaded Data

CGM Options

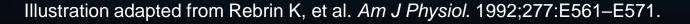
"Personal" CGM

- DexCom G6
- Medtronic Guardian
 (670G / Connect)
- Freestyle Libre
- Senseonics Eversense
 "Professional" CGM
- Medtronic iPro
- Dexcom G4 Professional
- Freestyle Libre Pro

))



How They Work


- Glucose sensor is inserted in subcutaneous tissue and connected to a transmitter
- Glucose sensor sends values to the transmitter
- Transmitter then sends data wirelessly to a phone, watch, pump or handheld monitor where data can be viewed and acted upon in real-time

Interstitial Fluid and "Lag Time"

- Capillary glucose must diffuse into the interstitial fluid (ISF)
- ISF glucose levels may lag capillary levels by 5–15 minutes
- When glucose levels are stable, ISF glucose levels and capillary blood glucose levels are similar
- Overall, the sensor glucose <u>trends</u> are more important than the <u>absolute</u> measurements

Glucose Rising:

SG likely <u>lower</u> than actual BG

Glucose Falling:

SG likely <u>higher</u> than actual BG

ood Glucose

Glucose Stable:

SG likely in equilibrium with BG

During Exercise: Lag Time is <u>extended</u>.

Aerobic exercise: CGM tends to over-estimate glucose

Anaerobic/HIIT exercise: CGM tends to under-estimate glucose

Clinical Advantages of CGM

- Reduction in HbA1c
- Less glycemic variability
- Increased time in-range
- Reduced hypoglycemia
 - Frequency
 - Severity
 - Duration

Permits true pattern analysis

Diabetes Care 2010;33:17-22 Diabetes Care 2013;36(12):4160-4162 JAMA 2017;317(4):371-378 JAMA 2017;317(4):379-387

Quality of Life Advantages

♦ ↓↓↓ SMBG Requirements

- Real-time data sharing
- Overnight peace of mind
- Enhanced safety
 - Driving
 - Sports/Exercise
 - Hazard Situations
- Learn cause:effect relationships
- Drive hybrid closed-loop technology

What Do We Get in Real Time?

Numbers Alerts Trends

GRADING PERIOD	1	2	3	4
READING	A			
VRITTEN COMMUNICATION	A			
ATHEMATICS	С			
CIENCE/HEALTH	B			
SOCIAL STUDIES	B			
ART	A			
MUSIC	A			
PHYSICAL EDUCATION	С			
Grade Average	B			
Attendance: Present	40			
Absent	0			
Tardy				

The Numbers: How Accurate Are They Really?

MARD Compared to YSI(lab)

- Freestyle Libre¹: 11.4%
- Older popular meters⁵: 10-11%
- Medtronic Guardian²: 10.6%
 - **Dexcom G6³: 9.9%**
- Senseonics[™] Eversense⁴: 8.8%

State-of-the-art BG Meters⁵: 4-6%

 Wadwa et al. Diab Tech & Ther, 20:6, 2018 (0 cal/day) 2 FDA SSED P160017/S017, 2/13/2018 (2 cal/day)
 Bailey et al. Diab Tech & Ther, 17:11, 2015 (0 cal/day)
 4 PRECISE II: Diab Tech & Ther, 20:3, 2018 (2 cal/day)

Can The Numbers Be Trusted?

Two years ago, 81% of CGM Users openly admitted to using **CGM** glucose values for determining insulin doses.*


*T1D Exchange Research, 2015

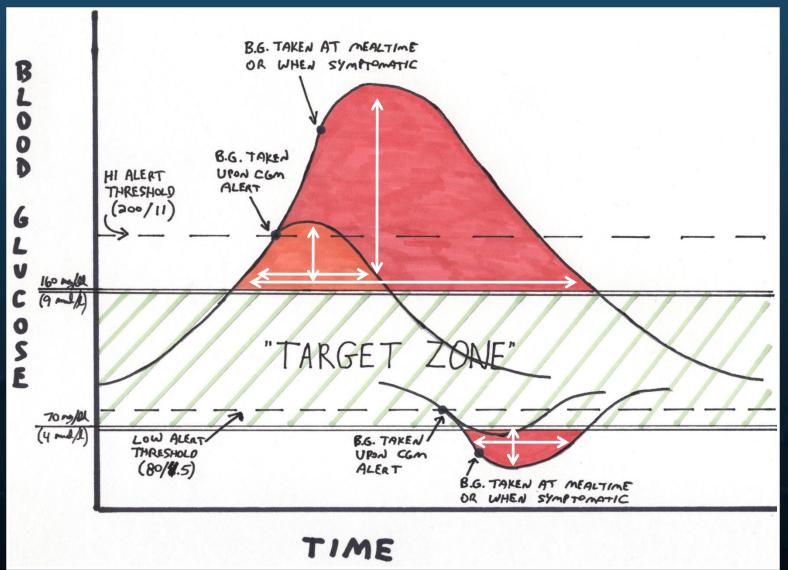
Can The Numbers Be Trusted? YES. but...

- <u>Not</u> if a CGM novice
- <u>Not</u> during sensor day 1*
- Not when recovering from hypoglycemia
- <u>Not</u> in state of rapid rise or fall
- <u>Not</u> if recent calibration off >20%
- <u>Not</u> if acetaminopthen taken in past 4 hrs*
- <u>Not</u> if symptoms don't match SG value

⇒ Alerts €

Types of Alerts

- Hi/Low Alert: Cross specified high or low thresholds
- Predictive Alert: Anticipated crossing of high or low thresholds
- Rate of Change: Rapid rise or fall


- Hi/Low Alert:
 ☑ must balance benefit vs nuisance
 ☑ low: ≥ 80 mg/dl
 ☑ high: start very high (300?), titrate down to allowable postprandial peak
- Predictive Alert:
 ☑ potential for false positives
 ☑ set for short time interval (≤ 10 min)
- Rate of Change:
 ☑ >3 mg/dl/min fall rate (for preventing lows)
 ☑ >3 mg/dl/min rise rate (for missed boluses)

The Value of Alerts: Minimizing the DURATION and MAGNITUDE of BG Excursions

CGM Turns Mountains into Molehills

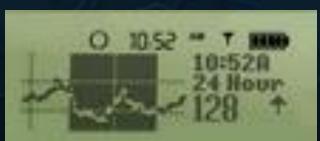
CGM Alerts Are Like BLOOD SUGAR BUMPERS!

Timely, consistent response is Key!

1. Act on the highs

- hydrate
- exercise
- bolus (less IOB)

2. Act on the lows- rapid carbs


Decision-Making Based on Trend Information

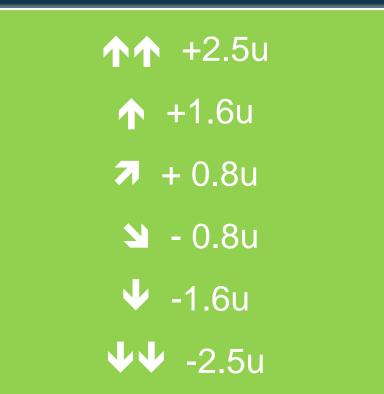
Self-Care Choices

- To snack?
- To check again soon?
- To exercise?
- To adjust insulin?

- Key Situations
 - Driving
 - o Sports
 - o Tests
 - o Bedtime

Adjust Boluses Based on Arrows

 $\mathbf{\Phi}\mathbf{\Phi}$

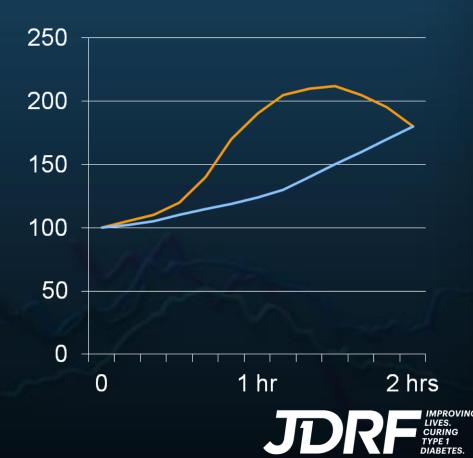

Subtract enough to offset 75 mg/dl drop


Simplify It With Sticky Notes!

Example:

Correction Factor = 30

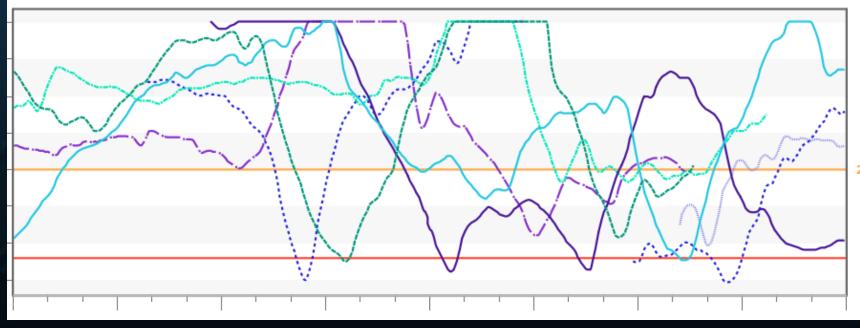
Answer This!


Betty Lou's blood sugar is rising going into lunch. She should:

A.Take her usual insulin dose (based on BG and carbs)B.Take her usual dose, but delay her mealC.Take more than her usual dose

Other Applications for Trend/Curve: Hyperglycemia Treatment: (When the **levee trend graph** breaks)

- Break within 2 hours of bolus: do <u>not</u> correct!
- No break within 2 hours of bolus: <u>Correct</u>!



What Can We Get From Analyzing CGM Data? (a retrospective journey)

Completely Overwhelmed!

Objectives-Based Analysis

1. Are bolus amounts appropriate?

- Meal doses
- Correction doses
- 2. How long do boluses work?
- 3. What is the magnitude of postprandial spikes?
- 4. Is basal insulin holding BG steady?

Objectives-Based Analysis

5. Are asymptomatic lows occurring?

- Are there rebounds from lows?
- Are lows being over/under treated?
- 6. How does exercise affect BG?
 - Immediate
 - Delayed effects

7. Are there day-of-the-week patterns?

Objectives-Based Analysis

- 8. How do various lifestyle events affect BG?
 - Hi-Fat meals
 - Unusual foods
 - Stress
 - Illness
 - Work/School
 - Sex
 - Alcohol

These Are a Few of My Favorite Stats...

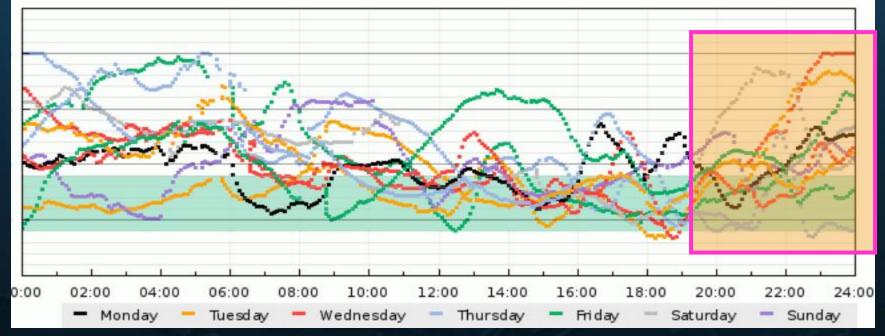
- Mean (avg) glucose
- % Of Time Above, Below, Within Target Range
- Standard Deviation
- # Of High & Low Excursions Per Week

Case Study 1a: Fine-Tuning Meal/Correction Boluses

• 34-y.o. insulin pump user, applying insulin:carb ratios

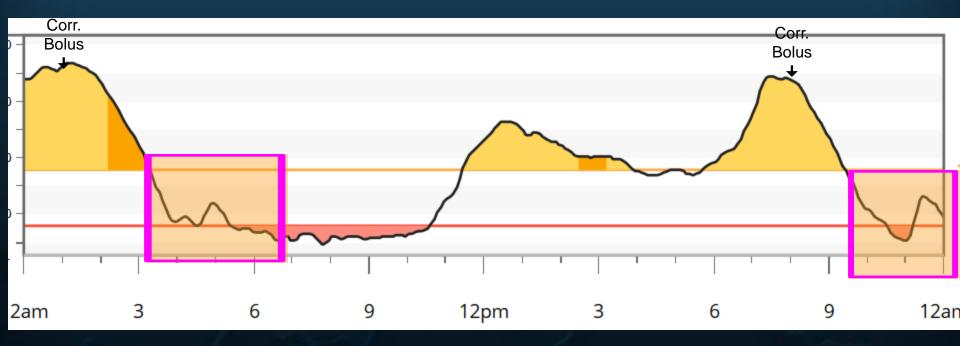
Case Study 1b: Fine-Tuning Meal/Correction Boluses

• 5-year-old on MDI; detemir BID.



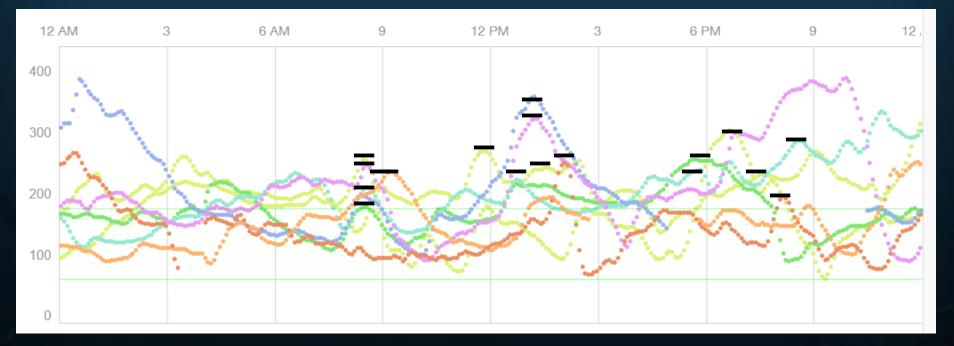
Dropping low 2-3 hours after dinner. Consider decreasing dinner bolus.

Case Study 1c: Fine-Tuning Meal/Correction Boluses


Teenager on a pump; stays up late snacking & playing video games.

Raise I:C ratio after dinner? Work on carb counting? Structured snacks?

Case Study 1d: Fine-Tuning Meal/Correction Boluses


• Adult T1, detemir BID and MDI, 11% of time below target.

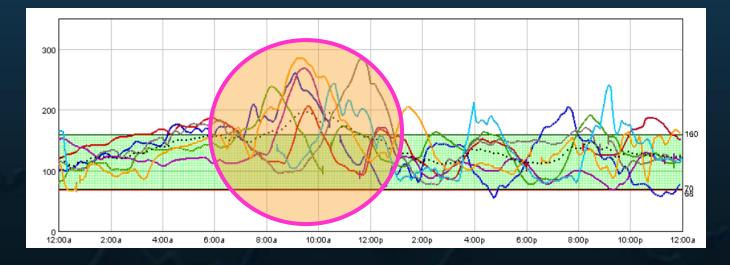
Consider increasing correction factor

Case Study 2a: Postprandial Analysis


- Young adult on MDI.
- HbA1c are higher than expected based on SMBG.
- Tired and lethargic after lunch.

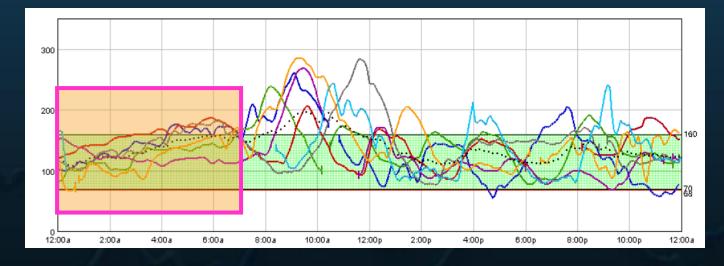
Greatest "spikes" after lunch. Strategies???

Case Study 2b: Postprandial Analysis


Pump user, usually bolusing right before eating.
Potatoes w/dinner most nights.

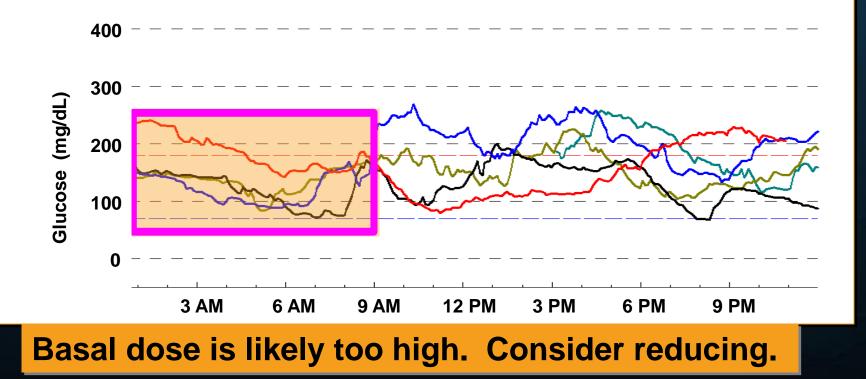
Spiking primarily after dinner. Consider lower g.i. food or pre-bolusing.

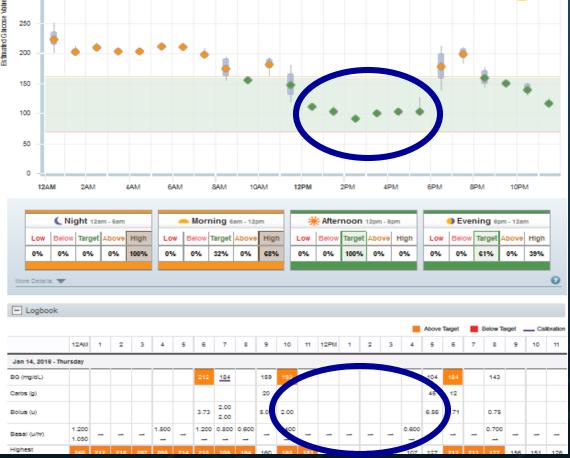
Case Study 2c: Postprandial Analysis


- Pump user, 6 months pregnant
- Pre-bolusing (15-20 min) at most meals.

Spiking primarily after breakfast. Consider "splitting" breakfast or walking post-bkfst.

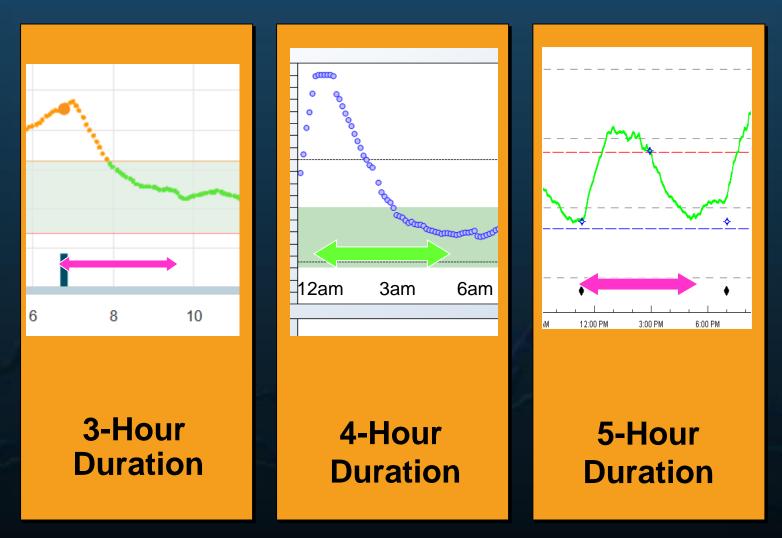
Case Study 3a: Basal Insulin Regulation


- Pump user, 6 months pregnant
- Generally not eating (or bolusing) after 8pm.

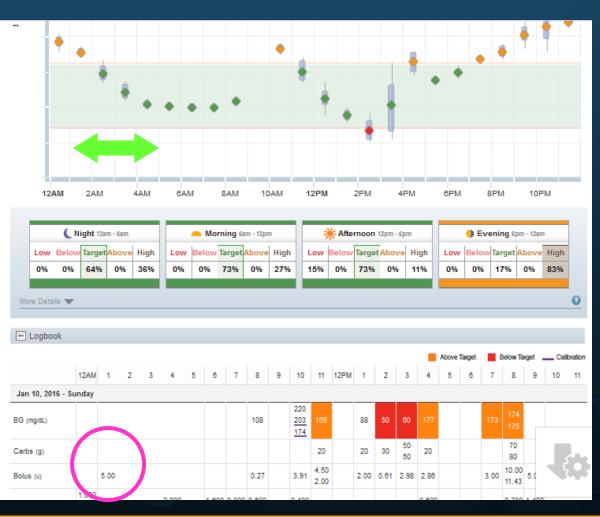

BG rising 1am-6am. Consider raising basal insulin 11pm-4am.

Case Study 3b: Basal Insulin Regulation

- Type 1 diabetes; using insulin glargine & MDI
- History of morning lows
- Snacking at night and not "covering" w/bolus

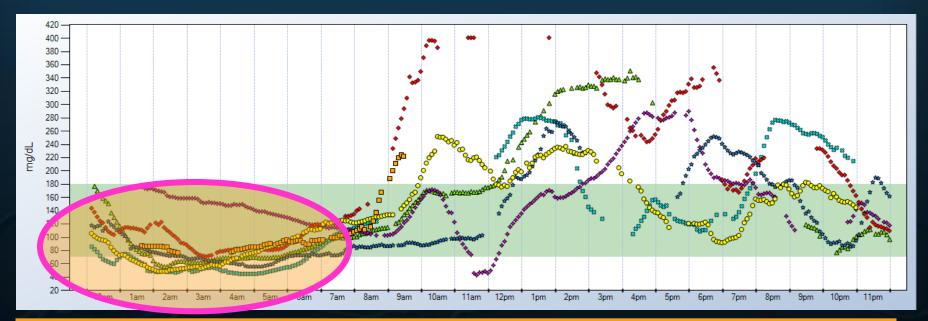

Case Study 3c: Basal Insulin Regulation

Pump user, fasted (and no bolus) from 10am to 5pm.


BG stable 1pm-5pm. Basal setting verified 12-4.

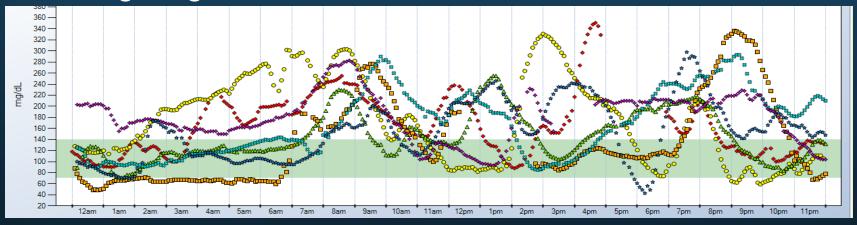
Case Study 4a: Determination of Insulin Action Curve

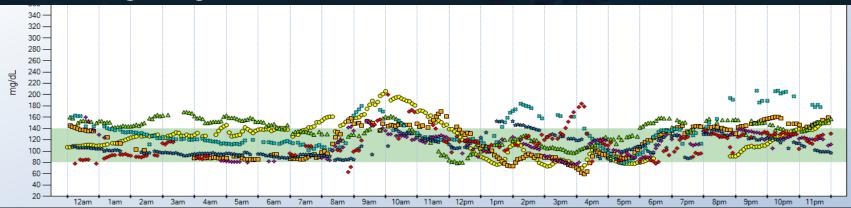
Case Study 4b: Determination of Insulin Action Curve


- Correction bolus at 1am
- BG levels off at 4:30 am

3.5 Hour Duration of Bolus Action.

Case Study 5: Patterns Surrounding Hypoglycemia


- Type1 college student; on pump
- Frequent fasting highs (9-10 AM). Wanted to raise overnight basal rates.


Dropping & rebounding during the night. Consider <u>decreasing</u> basal in early part of night.

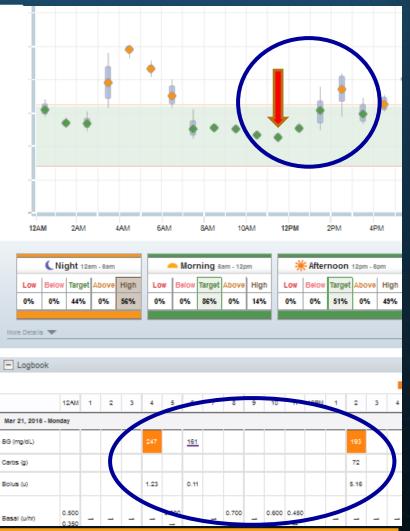
Case Study 6: Effectiveness of Ancillary Meds

• 6 mg liraglutide

• 12 mg liraglutide

Case Study 7: Day-Of-The-Week Analysis

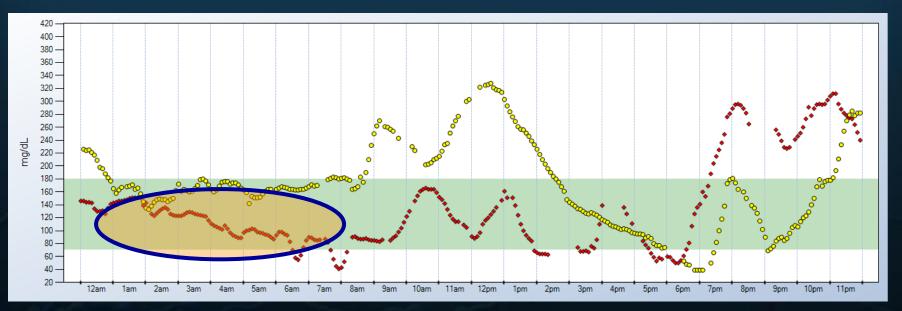
30 days Tue Aug 14, 2018 - Wed Sep 12, 2018							
		O 6:00	AM - 10:00 PM	Urgent low < 55	Low 55 - 70	In range 70 - 16	0 📕 High > 160
		© 10:00) PM - 6:00 AM	Urgent low < 55	Low 55 - 70	In range 70 - 16	0 High > 160
🗂 Daily Statistics	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Time in Range							
<mark>8 High</mark>	2	2	2	0	2	1	0
% In Range	72	69	70	63	77	70	80
% Low	21	22	20	32	17	24	15
% Urgent Low	6	6	8	5	3	5	5
# Readings	1102	1398	1284		1038	1089	1157
Min	39	45	39	39	39	39	39
Max	190	272	188	150	181	173	154
Mean	87	85	90	81	92	88	87
Std. Dev.	26	28	29	21	27	27	21
Quartile 25	69	68	68	64	72	68	73
Median	83	81	87	75	85	81	84
Quartile 75	102	93	110	96	109	106	98
IQR	33	25	42	32	37	38	25
IQ Std. Dev.	10	7	12	9	11	11	7
SD Mean	1	1	1	1	1	1	1
%CV	30	33	32	26	30	30	25


 Significantly more lows on Thursdays.

Look for days of the week with unusual proportion of highs or lows. Ask the right questions!

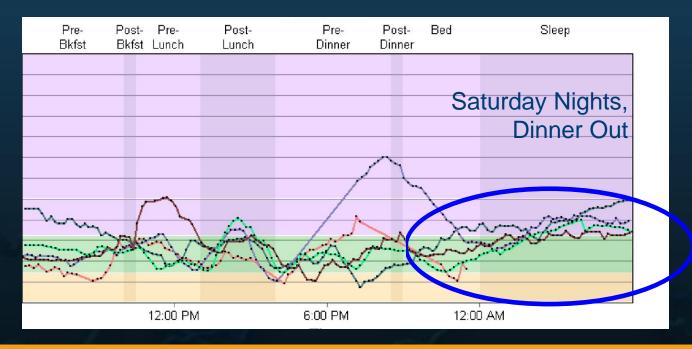
Case Study 8a: Lifestyle Responses

- 55 y.o. T1, pump user
- No food or bolus 6am-3pm


Dentist appointment (root canal) at noon

STRESS CAN RAISE BLOOD GLUCOSE!!!

Case Study 8b: Lifestyle Responses


- Pump user
- Basal rates confirmed overnight
- "yellow" night: light cardio workout prior evening
- "Red" night: Lifting & cardio workout prior evening

Experiencing delayed-onset hypoglycemia from heavy workouts. Consider temp basal reduction.

Case Study 8c: Lifestyle Responses

- Pump user
- Normal fasting readings during the week, but high on weekends

Delayed rise from high-fat meals. Consider using temp basal increase.

- Meal/Correction dose evaluation
- Bolus action curve
- Postprandial measurements
- Basal fine-tuning
- Patterns of hypoglycemia
- ✓ Lifestyle effects
- Medication effectiveness
- Day-of-the-week differences

YOU DON'T HAVE TO DO ALL **THIS AT** ONE TIME!!!

Ingredients For Success

- Go in with the right expectations
- Use at least 90% of the time
- Look at the display 10-20 times per day
- Do not over-react to the data; take IOB into account
- Adjust your therapy based on trends/patterns
- Calibrate properly
- Minimize "nuisance" alarms

